Petri dish PCR: laser-heated reactions in nanoliter droplet arrays.

نویسندگان

  • Hanyoup Kim
  • Siarhei Vishniakou
  • Gregory W Faris
چکیده

We report high-speed real-time PCR performed on an unmodified disposable polystyrene Petri dish. The reaction cycle relies solely on an infrared laser for heating; no conventional heater is required. Nanoliter droplets of PCR mixture as water-in-oil emulsions printed in an array format served as individual PCR microreactors. A simple contact printing technique was developed to generate a large array of uniform sized nanoliter droplets using disposable pipette tips. Printed droplets showed variation of less than 10% in volume and the oil/water/polystyrene interface formed a compact droplet microreactor approximately spherical in shape. The uniform droplet array was used to optimize the laser power required for the two heating steps of PCR, annealing/extension and melting, while the ambient conditions were at room temperature. The optical heating allows for an extremely fast heating rate due to the selective absorption of the infrared laser by PCR buffer only and not the oil or polystyrene Petri dish, allowing completion of 40 amplification cycles in approximately 6 minutes. The quantitative assay capability of the system is also presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanodroplet real-time PCR system with laser assisted heating.

We report the successful application of low-power (approximately 30 mW) laser radiation as an optical heating source for high-speed real-time polymerase chain reaction (PCR) amplification of DNA in nanoliter droplets dispersed in an oil phase. Light provides the heating, temperature measurement, and Taqman real-time readout in nanoliter droplets on a disposable plastic substrate. A selective he...

متن کامل

Interfacial temperature measurements, high-speed visualization and finite-element simulations of droplet impact and evaporation on a solid surface

The objective of this work is to investigate the coupling of fluid dynamics, heat transfer and mass transfer during the impact and evaporation of droplets on a heated solid substrate. A laser-based thermoreflectance method is used to measure the temperature at the solid–liquid interface, with a time and space resolution of 100 ls and 20 lm, respectively. Isopropanol droplets with microand nanol...

متن کامل

Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip.

Microdroplets offer unique compartments for accommodating a large number of chemical and biological reactions in tiny volume with precise control. A major concern in droplet-based microfluidics is the difficulty to address droplets individually and achieve high throughput at the same time. Here, we have combined an improved cartridge sampling technique with a microfluidic chip to perform dropl...

متن کامل

Nanoliter multiplex PCR arrays on a SlipChip.

The SlipChip platform was tested to perform high-throughput nanoliter multiplex PCR. The advantages of using the SlipChip platform for multiplex PCR include the ability to preload arrays of dry primers, instrument-free sample manipulation, small sample volume, and high-throughput capacity. The SlipChip was designed to preload one primer pair per reaction compartment and to screen up to 384 diff...

متن کامل

Interface dynamics under nonequilibrium conditions: from a self-propelled droplet to dynamic pattern evolution.

In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2009